Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

The catena-arsenite chain anion, $[AsO_2]_n^{n-}$: $(H_3NCH_2CH_2NH_3)_{0.5}[AsO_2]$ and NaAsO₂ (revisited)

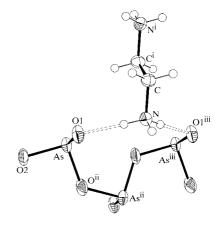
Clare Lee and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
Correspondence e-mail: w.harrison@abdn.ac.uk

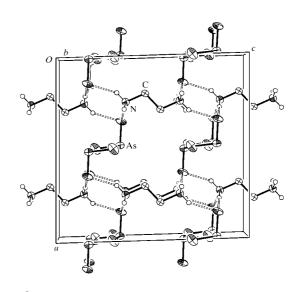
Received 17 March 2004 Accepted 29 March 2004 Online 30 April 2004

The title compounds contain the *catena*-arsenite $[AsO_2]_n^{n-1}$ unit, in which the As^{III} atom is pyramidally coordinated to one terminal and two bridging O atoms, resulting in an infinite anionic chain. Ethylenediammonium *catena*-arsenite, $(C_2H_{10}-N_2)_{0.5}[AsO_2]$, is the first example of this anion in the company of an organic cation. The ethylenediammonium species interact with the $[AsO_2]^-$ chains by way of $N-H\cdots O$ hydrogen bonds. The structure of sodium *catena*-arsenite, $Na[AsO_2]$ [Menary (1958). *Acta Cryst.* 11, 742–743], has been redetermined to yield more reliable geometrical parameters. The As-O distances are normal and the Na^+ cation is seven-coordinate [Na-O] = 2.285 (4)–3.063 (4) Å] in a distorted capped trigonal prismatic geometry.

Comment


The $[AsO_3]^{3-}$ arsenite group shows a distinctive pyramidal geometry, due to the stereochemically active lone pair of electrons on the As^{III} species, with an electron configuration of $[core]4s^24p^1$. This geometry is quite distinct from the tetrahedral coordination invariably displayed by the $[As^VO_4]^{3-}$ arsenate group. A number of minerals and synthetic compounds containing isolated pyramidal $[AsO_3]^{3-}$ ions are known, examples being reinerite, $Zn_3(AsO_3)_2$ (Ghose *et al.*, 1977), and the unusual arsenite–chloride finnemanite, $Pb_5(AsO_3)_3Cl$ (Effenberger & Pertlik, 1979).

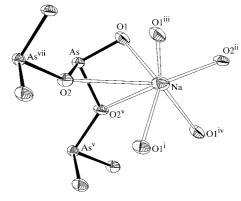
Arsenite groups may polymerize (or condense) *via* vertices into extended units, the simplest example of this being the $[As_2O_5]^{4-}$ diarsenite group, which is found in paulmooreite, $Pb_2As_2O_5$ (Araki *et al.*, 1980). In ludlockite, $PbFe_4(As_5O_{11})_2$ (Cooper & Hawthorne, 1996), as many as five AsO_3 units are fused together into $[As_5O_{11}]^{7-}$ units. The polymerization of arsenite groups results in the *catena*-arsenite chain anion, $[AsO_2]^-$ (or $[AsO_2]_n^{n-}$), which was first definitively characterized by Zemann (1951) in the mineral trippkeite, $CuAs_2O_4$. A few years later, the same anion was found in the synthetic compound $NaAsO_2$ by Menary (1958). The tripp-


keite structure was redetermined to improved precision by Pertlik (1975), who also showed that the two synthetic lead *catena*-arsenite chlorides Pb(AsO₂)Cl and Pb₂(AsO₂)₃Cl contain the same chain anion (Pertlik, 1988), as does the mineral leiteite, ZnAs₂O₄ (Ghose *et al.*, 1987).

$$\begin{bmatrix} H_3 N^+ & \stackrel{\dagger}{N} H_3 \\ (I) & (II) \end{bmatrix}_{0.5} \cdot [AsO_2 \Gamma \quad Na^+ \cdot [AsO_2 \Gamma]$$

We describe here the structure of ethylenediammonium *catena*-arsenite, (H₃NCH₂CH₂NH₃)_{0.5}[AsO₂], (I), which is the first example of a *catena*-arsenite chain accompanied by organic cations. We also describe the redetermined structure of NaAsO₂, (II).

Figure 1 A view of a fragment of (I), drawn with 50% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii and hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) $\frac{1}{2} - x$, y, 1 - z; (ii) 1 - x, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (iii) x, y - 1, z.]


Figure 2 The unit-cell packing in (I), projected on to (010) (normal to the *catena*-arsenite chain direction). Hydrogen bonds are indicated by dashed lines.

metal-organic compounds

Compound (I) (Fig. 1) shows (H₃NCH₂CH₂NH₃)²⁺ cations and anionic [AsO₂] chains. The geometrical parameters for the complete ethylenediammonium cation, which is generated by twofold symmetry from the unique atoms, are normal. The catena-arsenite chain is built up from three distinct atoms, with atom O1 forming the terminal As-O bond and atom O2 acting as the bridging atom. As expected, the geometry around As is pyramidal, with the As atom displaced from the leastsquares plane of the basal O atoms by 0.886 (2) Å. Interestingly, the most prominent peak (1.11 e Å^{-3}) in the final difference Fourier map for (I) is 0.74 Å from As, approximately where the lone pair of electrons is presumed to be located, and could thus correspond to a real chemical feature. As found in other well determined catena-arsenites (Pertlik, 1975; Ghose et al., 1987), the terminal As-O_T bond in (I) [1.705 (3) Å] is distinctly shorter than the average of the bridging bonds [mean As $-O_B = 1.812$ (2) A]. The $O_B-As O_B$ bond angle is significantly smaller than the O_B -As- O_T bond angles (Table 1).

As well as van der Waals and electrostatic forces, the organic cations and the chain anion in (I) interact by way of N-H $\cdot\cdot\cdot$ O hydrogen bonds (Table 2). Two of the three H-N moieties make short near-linear hydrogen bonds to arsenite O-atom acceptors, whilst the third N-H group is bifurcated to two arsenite O acceptor atoms (sum of D-H $\cdot\cdot\cdot$ A bond angles about atom H1 = 359°). Overall, O_T accepts three hydrogen bonds and O_B accepts one. These interactions help to define a structure (Fig. 2) in which the *catena*-arsenite chains propagate along [010] (generated by the 2₁ screw axis), crosslinked along [100] by O $\cdot\cdot\cdot$ H-N-H $\cdot\cdot\cdot$ O bonds. Interchain linking along [001] is *via* the backbone of the organic moiety. The intrachain As $\cdot\cdot\cdot$ As i separation in (I) is 3.1991 (4) Å [symmetry code: (i) 1-x, $y-\frac{1}{2},\frac{1}{2}-z$].

The structure of (II) (Fig. 3) is more or less the same as that determined by Menary (1958) using film methods, but with improved standard uncertainties. The Na⁺ cation is coordinated to seven O atoms (mean Na-O = 2.623 Å), all of which are parts of neighbouring anionic [AsO₂]⁻ chains. The resulting NaO₇ polyhedron approximates to a distorted

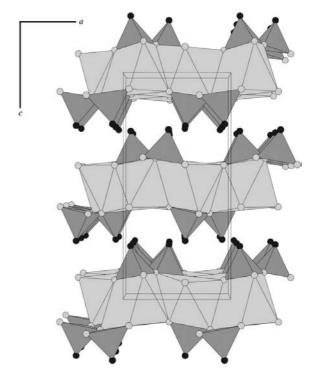


Figure 3 A view of a fragment of (II), drawn with 50% probability displacement ellipsoids. Note that atoms O1, O2 and O2 v represent a face shared between the AsO₃ and NaO₇ polyhedra. [Symmetry codes are as in Table 3; additionally: (vii) $\frac{1}{2} - x$, $y + \frac{1}{2}$, z.]

capped trigonal prism. The Na bond valence sum (BVS) of 1.00 (Brown, 1996) is exactly in agreement with the expected value. The As geometry is again pyramidal, with the As atom displaced from the least-squares plane of the basal O atoms by 0.912 (3) Å. The As-O distances [As- O_T = 1.684 (4) Å and mean As- O_B = 1.822 (3) Å] are similar to those found for (I). As in (I), the O_B -As- O_B bond angle is significantly smaller than the O_B -As- O_T bond angles (Table 3). By comparison, Menary's (1958) results (As- O_T = 1.600 Å, and As- O_B = 1.810 and 1.947 Å) indicated a much greater degree of distortion about As.

In the unit-cell packing in (II) (Fig. 4), the *catena*-arsenite chains propagate along [010], as generated by *b*-glide symmetry, resulting in an intrachain $As\cdots As^{ii}$ separation of 3.2121 (7) Å [symmetry code: (ii) $\frac{1}{2} - x, \frac{1}{2} + y, z$]. The face- and edge-sharing NaO_7 groups are sandwiched between the $[AsO_2]^-$ chains and crosslink them in the *a* direction, resulting in neutral (001) slabs of stoichiometry $NaAsO_2$. The As^{III} lone-pair electrons appear to be directed into the inter-slab region. The shortest interblock $As\cdots O$ and $As\cdots As$ contacts are 3.762 (3) and 3.6844 (7) Å, respectively. This is quite reminiscent of the situation in ludlockite (Cooper & Hawthorne, 1996), in which the $[As_5O_{11}]^{7-}$ units face each other.

The geometrical parameters for the $[AsO_2]^-$ units in (I) and (II) are broadly consistent with the equivalent data for $CuAs_2O_4$ and $ZnAs_2O_4$. In particular, the $As-O_B$ bond

Figure 4 A polyhedral representation of the unit-cell packing in (II), projected on to (010). The NaO₇ polyhedra are shown with light shading and the AsO₃ groups are represented by AsO₃E tetrahedra (dark shading), where the dummy atom E (very dark shading), placed 1.0 Å from As, represents the lone pair of electrons. The *catena*-arsenite chains propagate towards the viewer.

lengths are clustered in the narrow range of 1.806 (2)–1.829 (3) Å. The $As-O_T$ bond lengths show somewhat greater variability, which might be due to the different bonding situations of the O atoms in question: the O_T atom in (I) [1.705 (3) Å] only accepts hydrogen bonds, whereas the O_T atom in $CuAs_2O_4$ (1.765 Å) is also bonded to two Cu atoms. However, there are also some significant differences. For example, the O_B-As-O_B bond angle of 100.3° in $CuAs_2O_4$ is significantly larger than the O_B-As-O_T bond angle (95.9°), which is the reverse of the situation for (I), (II) and $ZnAs_2O_4$ (Ghose *et al.*, 1987).

Experimental

For (I), a mixture of As_2O_3 (1 g), ethylenediamine (0.5 g) and water (10 ml) was heated to 353 K in a plastic bottle for 48 h. Upon cooling, the resultant solids were filtered off, yielding some plate-shaped crystals of (I) accompanied by substantial amounts of undissolved or recrystallized As_2O_3 . We have not yet succeeded in making (I) in purer form. For (II), a commercial sample (Sigma Chemical Co.) of $NaAsO_2$ was recrystallized from methanol, in which it is sparingly soluble. The resulting crystal quality is poor.

Compound (I)

Crystal data

$(C_2H_{10}N_2)_{0.5}[AsO_2]$	Mo $K\alpha$ radiation
$M_r = 137.98$	Cell parameters from 221
Monoclinic, $I2/a$	reflections
a = 12.7854 (8) Å	$\theta = 3.1-32.5^{\circ}$
b = 4.6647 (3) Å	$\mu = 8.37 \text{ mm}^{-1}$
c = 13.3343(9) Å	T = 293 (2) K
$\beta = 91.7380 (10)^{\circ}$	Plate, colourless
$V = 794.89 (9) \text{ Å}^3$	$0.31 \times 0.29 \times 0.02 \text{ mm}$
Z = 8	
$D_x = 2.306 \text{ Mg m}^{-3}$	

Data collection

Bruker SMART 1000 CCD area-	1430 independent reflections
detector diffractometer	1181 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.037$
Absorption correction: multi-scan	$\theta_{\rm max} = 32.5^{\circ}$
(SADABS; Bruker, 1999)	$h = -16 \rightarrow 19$
$T_{\min} = 0.131, T_{\max} = 0.850$	$k = -7 \rightarrow 5$
3520 measured reflections	$l = -19 \rightarrow 20$

Refinement

reginement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0792P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.039$	+ 0.139P]
$wR(F^2) = 0.115$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
1430 reflections	
48 parameters	$\Delta \rho_{\min} = -1.68 \text{ e Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	(Sheldrick, 1997)
	Extinction coefficient: 0.0032 (8)
= 1.05 80 reflections parameters	$(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 1.11 \ {\rm e \ \mathring{A}^{-3}}$ $\Delta\rho_{\rm min} = -1.68 \ {\rm e \ \mathring{A}^{-3}}$ Extinction correction: <i>SHELXL</i> 97 (Sheldrick, 1997)

Table 1 Selected geometric parameters (Å, °) for (I).

As-O1 As-O2	1.705 (3) 1.806 (2)	As-O2 ⁱ	1.817 (3)
$O1-As-O2$ $O1-As-O2^{i}$	99.04 (10) 98.57 (13)	$O2-As-O2^{i}$ $As-O2-As^{ii}$	93.93 (7) 123.99 (13)

Symmetry codes: (i) 1 - x, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (ii) 1 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$.

Table 2 Hydrogen-bonding geometry (\mathring{A}, \circ) for (I).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$N-H1\cdots O1^{i}_{::}$	0.89	2.10	2.905 (4)	150
$N-H1\cdots O2^{ii}$ $N-H2\cdots O1^{iii}$	0.89 0.89	2.58 1.83	3.318 (4) 2.719 (3)	140 174
N-H3···O1	0.89	1.82	2.701 (3)	172

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} - y$, $\frac{1}{2} - z$; (ii) $x - \frac{1}{2}$, 1 - y, z; (iii) x, y - 1, z.

Compound (II)

Crystal data

Na[AsO ₂]	Mo $K\alpha$ radiation
$M_r = 129.91$	Cell parameters from 1514
Orthorhombic, Pbca	reflections
a = 6.7762 (5) Å	$\theta = 2.9 - 31.8^{\circ}$
b = 5.0901 (4) Å	$\mu = 13.62 \text{ mm}^{-1}$
c = 14.3098 (11) Å	T = 293 (2) K
$V = 493.57 (7) \text{ Å}^3$	Rod, colourless
Z = 8	$0.23 \times 0.08 \times 0.08 \text{ mm}$
$D_{\rm m} = 3.497 \; {\rm Mg \; m^{-3}}$	

Data collection

Bruker SMART 1000 CCD area-	894 independent reflections
detector diffractometer	639 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.048$
Absorption correction: multi-scan	$\theta_{\rm max} = 32.5^{\circ}$
(SADABS; Bruker, 1999)	$h = -10 \rightarrow 10$
$T_{\min} = 0.120, \ T_{\max} = 0.336$	$k = -7 \rightarrow 6$
5152 measured reflections	$l = -21 \rightarrow 18$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0661P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.109$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.01	$\Delta \rho_{\text{max}} = 2.97 \text{ e Å}^{-3}$
894 reflections	$\Delta \rho_{\min} = -1.05 \text{ e Å}^{-3}$
37 parameters	

Table 3 Selected geometric parameters (Å, °) for (II).

Na-O1i	2.285 (4)	Na-O2	2.996 (4)
Na-O1	2.397 (5)	$Na-O2^{v}$	3.063 (4)
Na-O2 ⁱⁱ	2.413 (4)	As-O1	1.684 (4)
Na-O1 ⁱⁱⁱ	2.420 (4)	$As-O2^{v}$	1.815 (3)
Na-O1iv	2.785 (4)	As-O2	1.829(3)
O1-As-O2 ^v	95.42 (16)	$O2^{v}$ -As- $O2$	92.93 (11)
O1-As-O2	99.07 (17)	As^{vi} $-O2$ $-As$	123.66 (19)

Symmetry codes: (i) $x - \frac{1}{2}, \frac{3}{2} - y, 1 - z$; (ii) $\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$; (iii) 1 - x, 2 - y, 1 - z; (iv) 1 - x, 1 - y, 1 - z; (v) $\frac{1}{2} - x, y - \frac{1}{2}, z$; (vi) $\frac{1}{2} - x, \frac{1}{2} + y, z$.

For (I), the H atoms were placed in calculated positions (C—H distances in the range 0.96–0.98 Å and N—H distances of 0.89 Å) and refined by riding, allowing for free rotation of the rigid NH₃ group about the C—N bond. The constraint $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm attached}$ atom) was applied in all cases. For (II), the maximum difference peak was 0.82 Å from As.

For both compounds, data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *ATOMS* (Dowty, 1999); software used to prepare material for publication: *SHELXL*97.

metal-organic compounds

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC1044). Services for accessing these data are described at the back of the journal.

References

Araki, T., Moore, P. B. & Brunton, G. D. (1980). Am. Mineral. 65, 340–345.

Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.

Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02a) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cooper, M. A. & Hawthorne, F. C. (1996). Can. Mineral. 34, 79-89.

Dowty, E. (1999). *ATOMS*. Version 5.0.7 for Windows and Macintosh. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

Effenberger, H. & Pertlik, F. (1979). Tschermaks Mineral. Petrogr. Mitt. 26, 95-107.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Ghose, S., Boving, P., Lachapelle, W. A. & Wan, C. (1977). Am. Mineral. 62, 1129–1134.

Ghose, S., Sen Gupta, P. K. & Schlemper, E. O. (1987). *Am. Mineral.* **72**, 629–632.

Menary, J. W. (1958). Acta Cryst. 11, 742-743.

Pertlik, F. (1975). Tschermaks Mineral. Petrogr. Mitt. 22, 211-217.

Pertlik, F. (1988). Z. Kristallogr. 184, 191-201.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Zemann, J. (1951). Tschermaks Mineral. Petrogr. Mitt. 2, 417-423.